Radial nth Derivatives of Blaschke Products.

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interpolating Blaschke Products and Angular Derivatives

We show that to each inner function, there corresponds at least one interpolating Blaschke product whose angular derivatives have precisely the same behavior as the given inner function. We characterize the Blaschke products invertible in the closed algebra H∞[b : b has finite angular derivative everywhere]. We study the most well-known example of a Blaschke product with infinite angular deriva...

متن کامل

Exceptional sets for the derivatives of Blaschke products

is the Nevanlinna characteristic of f [13]. Meromorphic functions of finite order have been extensively studied and they have numerous applications in pure and applied mathematics, e.g. in linear differential equations. In many applications a major role is played by the logarithmic derivative of meromorphic functions and we need to obtain sharp estimates for the logarithmic derivative as we app...

متن کامل

Integral means of the derivatives of Blaschke products

We study the rate of growth of some integral means of the derivatives of a Blaschke product and we generalize several classical results. Moreover, we obtain the rate of growth of integral means of the derivative of functions in the model subspace K B generated by the Blaschke product B.

متن کامل

On p-radial Blaschke and harmonic Blaschke additions

In the paper, we first improve the radial Blaschke and harmonic Blaschke additions and introduce the p-radial Blaschke and p-harmonic Blaschke additions. Following this, Dresher type inequalities for the radial Blaschke-Minkowski homomorphisms with respect to p-radial Blaschke and p-harmonic Blaschke additions are established.

متن کامل

Computable Analysis and Blaschke Products

We show that if a Blaschke product defines a computable function, then it has a computable sequence of zeros in which the number of times each zero is repeated is its multiplicity. We then show that the converse is not true. We finally show that every computable, radial, interpolating sequence yields a computable Blaschke product.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: MATHEMATICA SCANDINAVICA

سال: 1971

ISSN: 1903-1807,0025-5521

DOI: 10.7146/math.scand.a-11015